
in the L. (L.) mexicana complex. The six gene models
in which these domains were identified (A42670,
A6630, A68920, A73510, A30200, and A45910)
were submitted to the TargetP and SecretomeP
servers and gene models A30200 and A45910 were
predicted for secretion. Additionally, A30200 and
A45910 were similar to two L. (L.) mexicana proteins
identified inaproteomicdataanalysisofL. (L.)mexicana

amastigotes54 (LmxM.28.2770 and LmxM.34.4710,
respectively; Supplementary data, Table S6). Although
these genes are not exclusive to the L. (L.) mexicana
complex, their similarity to two products from amasti-
gote proteomic data is suggestive that, at least in L.
(L.) amazonensis and L. (L.) mexicana, these products
are expressed by the intracellular form of the parasite
and could be secreted within host cells.

Figure 4. Bayesian consensus phylogeny of amastin surface proteins. The phylogram is represented by a consensus of 214 amastin sequences.
The root was inferred using midpoint rooting. WAG was used as the substitution matrix for the protein alignment. Posterior probabilities
exceeding 0.5 are shown in the branches. The tree topology suggests early branching of similar amastins shared by different species
(blue). These branches were classified as Leishmania pre-speciation amastins, composed by a, b, and g subfamily clades. We highlighted
the terminal taxa (late branching or apomorphic) of species-specific d-amastin clades of L. (L.) major (yellow), L. (V.) braziliensis (green),
and L. (L.) infantum (purple). Complex-specific clades of L. (L.) amazonensis and L. (L.) mexicana amastin surface proteins are in red. The
scale of the generated tree (see 0.4 bar) represents the number of substitutions per sequence position. The classification of amastin
clades in subfamilies a, b, g, and d was based on the amastin phylogeny performed by Jackson et al. (2010).
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The A30200 and A45910 gene models are candi-
dates for the construction of hybrid interactomes,
given that they present a protein domain expanded in
both L. (L.) amazonensis and L. (L.) mexicana (CDD
143803), are predicted to be secreted and are similar
to proteins identified in the proteome ofL. (L.) mexicana
amastigotes. The A30200 and A45910 gene models
present a considerable similarity with the mammalian
hypoxia up-regulated protein 1 (HYOU1) and the HSP
70 kDa protein 5 (HSPA5), respectively. We created
HYOU1 and HSPA5 interactome subsets to identify
host components that could be affected by the secre-
tion of both A30200 and A45910 gene products.
This analysis led us to identify toll-like receptor (TLR)
9 and IL-6 as putative targets of the L. (L.) amazonensis
A30200 and A45910 gene products (Fig. 5A and B).
The HYOU1 and HSPA5 both directly interact with
TLR9, a receptor implicated in the recognition of CpG
DNA motifs and present in endolysosomal compart-
ments where it is activated by proteolytic cleavage.84

TLR9 is preferentially expressed in the granulomas of
human cutaneous leishmaniasis caused by L. (V.) brazi-
liensis,85 and TLR9-deficient mice are more susceptible
to L. (L.) major infection.86,87 Thus, TLR9 is implicated
in the immune response against Leishmania. The inter-
action between host TLR9 and the putative secreted L.
(L.) amazonensis HYOU1/HSPA5-mimic could block
TLR9 function and favor intracellular establishment of
the parasite. TLR9 also is implicated in the production
of NO via NO synthase 2, tumor necrosis factor, IL-6,
and IL-12B. The production of IL-6 is inhibited in den-
dritic cells differentiated from monocytes in the pres-
ence of L. (L.) amazonensis88 and is present at low levels
in the sera of Chiclero’s ulcer patients infected for 3–8
months.89 Linares et al.90 reported that in vitro infection
with L. (L.) amazonensis amastigotes decreases NO
production by macrophages stimulated with IFN-g plus
lipopolysaccharide. Thus, although hypothetical and
genome based, our proposed interactome can be used
to identify components implicated in the establishment
of Leishmania infection of mammalian host cells. More-
over, the interactome provides a model for studying
Leishmania-secreted proteins and their influence on
important effectors of the host cell immune response.

3.4. Conclusions
We present the genome of the protozoan L. (L.) amazo-

nensis together with functional annotations and
extendedanalyses focusedonhost–parasite interactions.
We examined the genome sequences of L. (L.) amazonen-
sis and L. (L.) mexicana for potentially expressed genes
at expanded copy numbers. Confirming that a few
Leishmania species-specific genes may exist despite strik-
ing conservation at the gene level, we report conserved
domains, orthologous gene families, and amastin
surface proteins unique to L. (L.) amazonensis and L. (L.)

mexicana. Additionally, we propose an innovative ap-
proach to interactome analysis that emphasizes the role
ofparasitesecretedproteins inhost interactionnetworks.

4. Availability

The Leishmania (Leishmania) amazonensis Genome
Database is available at the URL http://www.lge.ibi.
unicamp.br/leishmania. This Whole Genome Shotgun

Figure 5. Interactomes of potentially secreted L. (L.) amazonensis
[A30200 (A) and A45910 (B)] and mammalian immune cell
proteins. The secreted parasite gene products are represented
by red nodes in the interactome. The expression statuses of
these parasite proteins during the amastigote stage were
inferred using blastp with the proteomic database of L. (L.)
mexicana amastigotes. The secreted components of L. (L.)
amazonensis amastigotes share 28% identity and 94% coverage
(A30200, A) and 69% identity and 90% coverage (A45910, B)
with the mammalian HYOU1 and HSPA5 proteins, respectively.
Both secreted components could directly interact with TLR9. We
propose that orthologs of mammalian HYOU1 and HSPA5 are
secreted by L. (L.) amazonensis amastigotes, interfering with host
cell functions such as signaling and the production of NO and ILs.
Arrows represent direct interactions and dashed arrows represent
indirect interactions. The interactome was built using Ingenuity
software, considering only proteins expressed in human and
mouse immune cells and considering experimentally identified
protein–protein interactions.
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projectwasdepositedatDDBJ/EMBL/GenBankunderthe
accession APNT00000000 (SUBID SUB120161,
BioProject PRJNA173202). The version described in this
paper is the first version, APNT01000000. While revising
this manuscript, we realized that another Brazilian group
from Instituto Oswaldo Cruz (IOC)—Fiocruz, Rio de
Janeiro, is sequencing the genome of L. (L.) amazonensis.
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